245 research outputs found

    Flow-Control Effectiveness of Convergent Surface Indentations on an Aerofoil at Low Reynolds Numbers

    Get PDF
    Passive flow control on aerofoils has largely been achieved through the use of protrusions such as vane-type vortex generators. Consequently, innovative flow-control concepts should be explored in an effort to improve current component performance. Therefore, experimental research has been performed at The University of Manchester to evaluate the flow-control effectiveness of a novel type of vortex generator made in the form of a surface indentation. The surface indentation has a trapezoidal planform. A spanwise array of indentations has been applied in a convergent orientation around the maximum-thickness location of the upper surface of a NACA-0015 aerofoil. The aerofoil has been tested in a twodimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chordbased blockage-corrected Reynolds number (Recorr) of ~2.70 x 105 . The baseline model has been found to suffer from a long laminar separation bubble (LSB) at low AoA. The application of the indentations at low AoA has considerably shortened the separation bubble. The indentations achieve this by shedding up-flow pairs of streamwise vortices. Despite the considerable reduction in bubble length, the increase in leading-edge suction due to the shorter bubble is limited by the removal of surface curvature and blockage (increase in surface pressure) caused locally by the convergent indentations. Furthermore, the up-flow region of the vortices, which locally weakens the pressure recovery around the trailing edge of the aerofoil by thickening the boundary layer, also contributes to this limitation. Due to the conflicting effects of the indentations, the changes in the pressure-lift and pressure-drag coefficients, i.e., cl,p and cd,p, respectively, are small. Nevertheless, the indentations have improved cl,p and cd,p beyond the uncertainty range, i.e., by ~1.3% and ~0.3%, respectively, at 3° AoA. The wake measurements show that turbulence intensity and Reynolds stresses have considerably increased in the indented case, thus implying that the indentations increase the viscous drag on the model. In summary, the convergent indentations are able to reduce the size of the LSB, but conversely, they are not highly effective in enhancing cl,p and cd,p at the tested Re

    Flow Control Over a Tractor-Trailer Using Vortex Generators

    Get PDF
    No abstract available

    Flow around an articulated lorry model

    Get PDF
    An experimental study has been conducted to investigate both the time-averaged and instantaneous flow pattern over a scale articulated vehicle model for understanding the flow physics of tractor-trailer vehicles. Fully turbulent flow was used in the study and smoke visualisation, surface oil flow visualisation and two-component particle image velocimetry were employed for flow diagnostics. Results obtained from the time-averaged and instantaneous flow fields show different flow pattern in the wake region downstream of the rear end of the trailer model. In the time-averaged flow field, a single counter-clockwise rotating vortex is presented in the wake region due to the coil-up of the lower shear layer. The instantaneous flow pattern shows that two wake vortices are presented in the wake region downstream of the trailer model. Moreover, the interactions between the wake vortex and the upper shear layer lead to the formation of the streamwise vortices within the shear layer. These streamwise vortices grow and propagate downstream which lead to the occurrence of vortex shedding in the upper shear layer downstream of the trailer model

    Flow visualisation of a normal shock impinging over a rounded contour bump in a Mach 1.3 free-stream

    Get PDF
    An experimental study has been conducted to visualise the instantaneous streamwise and spanwise flow patterns of a normal shock wave impinging over a rounded contour bump in a Mach 1.3 free-stream. A quartz-made transparent shock generator was used, so that instantaneous images could be captured during the oil-flow visualisation experiments. Fluorescent oil with three different colours was used in the surface oil-flow visualisation experiment to enhance the visualisation of flow mixing and complicated flow features that present in the flow field. Experimental data showed that the rounded contour bump could split the impinging normal shock wave into a or a series of lambda-shaped shock wave structure(s). In addition, it was found that the flow pattern and the shock wave structures that appeared over the rounded contour bump depended highly on the impinging location of the normal shock wave. The flow pattern shown in this study agreed with the findings documented in literature. Moreover, it was observed from the instantaneous oil streaks that the normal shock impinging location also affected the size and the formation location of the spanwise counter-rotating vortices downstream of the bump crest. Finally, it was concluded that the terminating shock could distort the oil streaks that left over the surface of the contour bump. Therefore, the use of the transparent normal shock wave generator is recommended when conducting experiments with normal shock wave impingement involved

    Electrohydrodynamic Methods for Fluid Flow Control

    Get PDF
    No abstract available

    Control of flow separation on a contour bump by jets in a Mach 1.9 free-stream: an experimental study

    Get PDF
    Flow separation control over a three-dimensional contour bump using jet in a Mach 1.9 supersonic free-stream has been experimentally investigated using a transonic/supersonic wind tunnel. Jet total pressure in the range of 0–4 bar was blowing at the valley of the contour bump. Schlieren photography, surface oil flow visualisation and particle image velocimetry measurements were employed for flow visualisation and diagnostics. Experimental results show that blowing jet at the valley of the contour bump can hinder the formation and distort the spanwise vortices. The blowing jet can also reduce the extent of flow separation appears downstream of the bump crest. It was observed that this approach of flow control is more effective when high jet total pressure is employed. It is believed that a pressure gradient is generated as a result of the interaction between the flow downstream of the bump crest and the jet induced shock leads to the downwards flow motion around the bump valley

    Thermal fluctuation characteristics around a nanosecond pulsed dielectric barrier discharge plasma actuator using a frequency analysis based on Schlieren images

    Get PDF
    A thermal fluctuation driven by a burst plasma discharge is experimentally investigated using a frequency analysis based on the Schlieren images. The burst plasma discharge is controlled by an interval frequency fint = 200 Hz and a pulse frequency fB = 3.6 kHz as well as the duration time of the burst event: Ton. A burst feature is defined as a burst ratio BR = Ton/(1/fint). The burst plasma discharge generates a burst-induced hot plume growing above a ground electrode. In a high burst ratio, which is BR = 0.45 and 0.57, the burst-induced hot plume is formed as a wave thermal pattern that is mainly fluctuated at the interval frequency of 200 Hz. Additionally, a maximum fluctuation spot of 200 Hz appears near the edge of an exposed electrode in a low burst ratio, whereas it moves towards the ground electrode in the high burst ratio. The possible scenario is that a relatively strong ionic wind and/or an induced jet generated in the high burst ratio might cause the movement of the maximum fluctuation spot

    Shock wave diffraction phenomena around slotted splitters

    Get PDF
    In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement

    Supersonic flow over rounded contour bumps with vortex generators or passive longitudinal jets

    Get PDF
    An experimental study has been conducted to investigate the flow characteristics over two rounded contour bumps. Vane-type vortex generators or longitudinal aligned passive by-pass jets were implemented in attempt to achieve wake flow control in rounded contour bumps. According to the results collected from the surface oil flow visualisation experiments, it was observed that the use of both the vane-type vortex generators and the longitudinally aligned passive by-pass jet could reduce the size of the spanwise vortices in the bump valley. In addition, a pair of streamwise horseshoe vortices was observed downstream of the bump crest of the contour bump that equipped with the vane-type vortex generators. From the data collected in the particle image velocimetry measurements, it was found that the use of both the vane-type vortex generators and the longitudinally aligned passive by-pass jet could not reduce the size of the wake region but they could reduce its strength. It is deduced that the two streamwise horseshoe vortices generated by the vane-type vortex generators enhance flow mixing which results in reducing the strength of the wake region. In contrast, blowing passive by-pass jet in the bump valley increases the local flow velocity in order to reduce the strength of the wake region
    • …
    corecore